1,199 research outputs found

    Bisous model - detecting filamentary patterns in point processes

    Full text link
    The cosmic web is a highly complex geometrical pattern, with galaxy clusters at the intersection of filaments and filaments at the intersection of walls. Identifying and describing the filamentary network is not a trivial task due to the overwhelming complexity of the structure, its connectivity and the intrinsic hierarchical nature. To detect and quantify galactic filaments we use the Bisous model, which is a marked point process built to model multi-dimensional patterns. The Bisous filament finder works directly with the galaxy distribution data and the model intrinsically takes into account the connectivity of the filamentary network. The Bisous model generates the visit map (the probability to find a filament at a given point) together with the filament orientation field. Using these two fields, we can extract filament spines from the data. Together with this paper we publish the computer code for the Bisous model that is made available in GitHub. The Bisous filament finder has been successfully used in several cosmological applications and further development of the model will allow to detect the filamentary network also in photometric redshift surveys, using the full redshift posterior. We also want to encourage the astro-statistical community to use the model and to connect it with all other existing methods for filamentary pattern detection and characterisation.Comment: 12 pages, 6 figures, accepted by Astronomy and Computin

    Galaxy filaments as pearl necklaces

    Full text link
    Context. Galaxies in the Universe form chains (filaments) that connect groups and clusters of galaxies. The filamentary network includes nearly half of the galaxies and is visually the most striking feature in cosmological maps. Aims. We study the distribution of galaxies along the filamentary network, trying to find specific patterns and regularities. Methods. Galaxy filaments are defined by the Bisous model, a marked point process with interactions. We use the two-point correlation function and the Rayleigh Z-squared statistic to study how galaxies and galaxy groups are distributed along the filaments. Results. We show that galaxies and groups are not uniformly distributed along filaments, but tend to form a regular pattern. The characteristic length of the pattern is around 7 Mpc/h. A slightly smaller characteristic length 4 Mpc/h can also be found, using the Z-squared statistic. Conclusions. We find that galaxy filaments in the Universe are like pearl necklaces, where the pearls are galaxy groups distributed more or less regularly along the filaments. We propose that this well defined characteristic scale could be used to test various cosmological models and to probe environmental effects on the formation and evolution of galaxies.Comment: 8 pages, 9 figures, 1 table, accepted for publication in A&

    Alignment of galaxies relative to their local environment in SDSS-DR8

    Full text link
    We study the alignment of galaxies relative to their local environment in SDSS-DR8 and, using these data, we discuss evolution scenarios for different types of galaxies. We defined a vector field of the direction of anisotropy of the local environment of galaxies. We summed the unit direction vectors of all close neighbours of a given galaxy in a particular way to estimate this field. We found the alignment angles between the spin axes of disc galaxies, or the minor axes of elliptical galaxies, and the direction of anisotropy. The distributions of cosines of these angles are compared to the random distributions to analyse the alignment of galaxies. Sab galaxies show perpendicular alignment relative to the direction of anisotropy in a sparse environment, for single galaxies and galaxies of low luminosity. Most of the parallel alignment of Scd galaxies comes from dense regions, from 2...3 member groups and from galaxies with low luminosity. The perpendicular alignment of S0 galaxies does not depend strongly on environmental density nor luminosity; it is detected for single and 2...3 member group galaxies, and for main galaxies of 4...10 member groups. The perpendicular alignment of elliptical galaxies is clearly detected for single galaxies and for members of < 11 member groups; the alignment increases with environmental density and luminosity. We confirm the existence of fossil tidally induced alignment of Sab galaxies at low z. The alignment of Scd galaxies can be explained via the infall of matter to filaments. S0 galaxies may have encountered relatively massive mergers along the direction of anisotropy. Major mergers along this direction can explain the alignment of elliptical galaxies. Less massive, but repeated mergers are possibly responsible for the formation of elliptical galaxies in sparser areas and for less luminous elliptical galaxies.Comment: 15 pages, 15 figures, accepted for publication in A&

    Flux- and volume-limited groups/clusters for the SDSS galaxies: catalogues and mass estimation

    Full text link
    We provide flux-limited and volume-limited galaxy group and cluster catalogues, based on the spectroscopic sample of the SDSS data release 10 galaxies. We used a modified friends-of-friends (FoF) method with a variable linking length in the transverse and radial directions to identify as many realistic groups as possible. The flux-limited catalogue incorporates galaxies down to m_r = 17.77 mag. It includes 588193 galaxies and 82458 groups. The volume-limited catalogues are complete for absolute magnitudes down to M_r = -18.0, -18.5, -19.0, -19.5, -20.0, -20.5, and -21.0; the completeness is achieved within different spatial volumes, respectively. Our analysis shows that flux-limited and volume-limited group samples are well compatible to each other, especially for the larger groups/clusters. Dynamical mass estimates, based on radial velocity dispersions and group extent in the sky, are added to the extracted groups. The catalogues can be accessed via http://cosmodb.to.ee and the Strasbourg Astronomical Data Center (CDS).Comment: 16 pages, 18 figures, 2 tables, accepted for publication in A&

    Wavelet analysis of the formation of the cosmic web

    Full text link
    According to the modern cosmological paradigm galaxies and galaxy systems form from tiny density perturbations generated during the very early phase of the evolution of the Universe. Using numerical simulations we study the evolution of phases of density perturbations of different scales to understand the formation and evolution of the cosmic web. We apply the wavelet analysis to follow the evolution of high-density regions (clusters and superclusters) of the cosmic web. We show that the positions of maxima and minima of density waves (their spatial phases) almost do not change during the evolution of the structure. Positions of extrema of density perturbations are the more stable, the larger is the wavelength of perturbations. Combining observational and simulation data we conclude that the skeleton of the cosmic web was present already in an early stage of structure evolution.Comment: 12 pages, 8 figures, revised versio
    • …
    corecore